Modeling and Predicting Literary Reception. A Data-Rich Approach to Literary Historical Reception
This contribution exemplifies a workflow for the quantitative operationalization and analysis of historical literary reception. We will show how to encode literary historical information in a dataset that is suitable for quantitative analysis and present a nuanced and theory-based perspective on automated sentiment detection in historical literary reviews. Applying our method to corpora of English and German novels and narratives published from 1688 to 1914 and corresponding reviews and circulating library catalogs, we investigate if a text’s popularity with lay audiences, the attention from contemporary experts or the sentiment in experts’ reviews can be predicted from textual features, with the aim of contributing to the understanding of how literary reception as a social process can be linked to textual qualities.
jcls-95-brottrager.xml
114.18 KB
XML
(MD5):84d780802195b70496ee668d5e43846d